Properties of the glomerular endothelial cell surface layer in vitro and in vivo
نویسنده
چکیده
A healthy kidney produces final urine that is practically devoid of proteins and other physiologically important solutes. Tremendous amounts of fluid are filtered every day through the glomerular filtration barrier which is the actual sieving site in the kidney. Failure of the filtering function leads to proteinuria, which is a feature common to nearly all kidney disease. In spite of this pivotal role, the central mechanisms behind proteinuria are still unexplained. The filtration barrier is a complex biological membrane composed of four different structures: the podocytes (epithelial cells), the glomerular basement membrane, the glomerular endothelium and the glomerular endothelial cell surface layer (ESL). During the last decade the focus for understanding the regulation of this selective sieve has rested heavily on the study of the podocytes, whereas the glomerular endothelium and the glomerular ESL has been more or less neglected as contributors to the permselectivity of the barrier. However, it is of fundamental importance to investigate all components of the filtration barrier in order to understand the pathophysiology of proteinuric kidney disease. The molecular structure of the glomerular ESL is largely unexplored, and available data about its constituents so far is only based on in vitro studies. The aim of this thesis was to identify molecules located in the glomerular ESL with a functional significance for normal glomerular filtration in vivo, and to examine whether a disease-emulating milieu damages major structural glomerular ESL components and thus increases the glomerular permeability to proteins. We have developed a method for qualitative and quantitative assessment of the glomerular ESL in rats, which includes a brief injection of hypertonic sodium chloride into the renal artery. This displaces and elutes non-covalently bound components of the glomerular ESL which are then subsequently collected for further characterization with liquid chromatography-mass spectrometry. Morphological as well as functional effects have been characterized by electron microscopy and by universal methods analyzing chargeand size selectivity of biological membranes. A conditionally immortalized human glomerular endothelial cell line was used to study the effects of hyperglycemia on glomerular ESL proteoglycans. Functional alterations were analyzed in terms of protein restriction by measuring the passage of albumin across a human glomerular endothelial cell monolayer. In conclusion, we have identified molecules from the glomerular ESL in rats that are essential for maintaining a normal glomerular barrier function. Further, we found that hyperglycemia was associated with an alteration of glomerular ESL proteoglycans which lead to an increased permeability for albumin. Overall, the observations in this thesis emphasize the importance of the glomerular ESL for the restriction of proteins in the glomerular filtration barrier. List of publications This thesis is based on the following papers, which will be referred to in the text by their Roman numerals: I. High glucose causes dysfunction of the human glomerular endothelial glycocalyx Singh A, Fridén V, Dasgupta I, Foster R.R, Welsh G.I, Tooke J.E, Haraldsson B, Mathieson P.W and Satchell S.C Am J Physiol Renal Physiol 300:F40-F48 2011 II. The glomerular endothelial cell coat is essential for glomerular filtration Fridén V, Oveland E, Tenstad O, Ebefors K, Nyström J, Nilsson U.A and Haraldsson B Kidney International, advance online publication, 16 March 2011; doi:10.1038/ki.2011.58 III. Further identification of components of the renal capillary endothelial cell coat Fridén V, Oveland E, Tenstad O, Björnson-Granquist A, Nyström J, Nilsson U and Haraldsson B Manuscript 1 The Am Physiol Soc, used with kind permission. Used with kind permission from Kidney International.
منابع مشابه
The Study of Collagen Immobilization on a Novel Nanocomposite to Enhance Cell Adhesion and Growth
Background: Surface properties of a biomaterial could be critical in determining biomaterial’s biocompatibility due to the fact that the first interactions between the biological environment and artificial materials are most likely occurred at material’s surface. In this study, the surface properties of a new nanocomposite (NC) polymeric material were modified by combining plasma treatment and...
متن کاملMorphology and Ultrastructure of Mouse Polarized Endometrial Epithelial Cell Monolyer in Vitro
Purpose: The objective for this study is to investigate the morphology and ultrastructure of mouse endometrial epithelial cell monolayer cultured on matrigel in dual-chambered system as an in vitro mouse endometrial epithelial cell culture model that mimics structural and functional properties of the endometrial epithelium in vivo. Materials and Methods: Mouse endometrial epithelial cells were...
متن کاملEffect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement
In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...
متن کاملIn vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies
Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...
متن کاملIsolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth
Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...
متن کاملEffect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions
Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...
متن کامل